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ABSTRACT

The nonlinear stress-strain behavior of unidirectional fiber
composite material was examined. Two approaches were adopted. The
first approach considers the stress-strain as nonlinear elastic relations,
which are derived at through the use of a complementary energy density
function, and takes intc account the material svmmetry.  The second
approach  adopts the Ramberg-Osgood representation of one-dimensional
stress-strain curves. By utilizing the deformation theory to express the
nonlinear parts of the strain, a nonlinear stress-strain behavior was

obtained.

An incremental formulation of these theories was implemented in a
finite element analysis. These approaches were examined in the context of
postbuckling analysis of thick-section laminated plates. It is shown that
the nonlinear behavior leads to a stiffness reduction for thick-section
plates. Moreover, the models examined produce a close response for thick

multi-layered laminated plates.
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1. INTRODUCTION

The design of fiber composite laminated structures has grown
rapidly over the last two decades. These laminated anisotropic
structures offer an exquisite alternative to the conventional isotropic
inaterials due to their light weight to high strength ratio. Therefore,
it is not surprising to find that the most immediate and primary
applications of laminated structures were exclusive to the
aeronautical and aviation industry in the form of thin laminated
plates and shells.  However, recently there has been a growing
interest in the design and application of fiber-reinforced composite
materials in the form of thick section plate and shell structures. This
introduces a major concern when using methods of analysis, such as
the classical laminate theory or its modifications, since these methods
assume the presence of a plane stress field in each lamina. However,
in a thick section composite, we verge to a true tridimensional stress
state, especially if a need to analyze stress concentrations or

structural discontinuities arises.

The search for effective and accurate design methods to
analyze laminated structures has led to the use of complex models.
These complexities arise through the consideration of geometric and
material nonlincar behavior. Such models are assumed to produce a

rchiable and accurate design.




Recently, more autention has been directed towards exploring
the effects of nonlinear constitutive behavior in the application of
thermoset, thermoplastic and metal matrix fiber composite systems.
These systems demand the application of a proper nonlinear
constitutive theory. A nonlinear constitutivz model can have a
significant effect on the structural design, especially in the presence
of local stress concentrations, such as crack tips, holes and cutouts,
edge effects and structural discontinuities. Hence, it is important to

assess such effects with the proper choice of constitutive relations.

This study is concerned with the formulation of a nonlinear
constitutive model for fiber composite laminates. The noniinear
behavior of a single lamina, which results from the matrix nonlinear
behavior or from a presence of micro-effects such as micro-cracks
and imperfect fiber matrix interface, is introcduced in the lamina's

constitutive model.

In the first part of this report, two major theories and
approaches of nonlinear constitutive models are examined and
reviewed in a detailed manner. In the second part, an incremental
formulation of the above theories is implemented. A nonlinear finite
element analysis is performed to examine the above theories in the
context of postbuckling analysis of thick section laminated plates.

Discussion and recommendations follow.




2. LITERATURE REVIEW

2.1 Nonlinear Behavior of Fiber Composite Laminates

It has been well recognized that different fiber composite
systems exhibit some form of nonlinear stress-strain behavior. One
source of nonlinearity can be related to the matrix material, such as
viscoelastic behavior in polymeric matrices or plasticity in metal
matrices.  Another source of nonlinearity can result due to micro-
structural characteristics, such as micro-cracks or imperfect interface

between the fiber and the matrix.

Severa! levels and approaches can be used in modeling the
nonlinear behavior of fiber composites. A micromechanics approach
can be obtained by modeling the micro-structure of the fibers and
matrix inclusion in some form of periodical array subject to different
states of stress and strain, Adams [1]. Another approach is to
consider the nonlinear responses of a homogenized anisotropic
lamina and to examine the nonlinear responses for the one
dimensional average transverse stress and/or for the axial shear,
while the stress-strain relation in the fiber direction remains linear.
Finally, interaction terms of multiaxial stress states can be formed
through the use of a potential stress function to describe the
nonlinear parts of the strains, such as the stress energy density

function or the deformation theory of plasticity.




itachin et al [2] formulated and used this approach whereby
they characterized the nonlinear stress-strain relations in a
Ramberg-Osgood representation for the one dimensional average
transverse and axial shear stress-strain relations. Moreover, they
used the deformation theory of plasticity to form nonlinear
constitutive relations which included an interaction term between

nonlinear axial shear and transverse stresses.

Smith and Rivlin [3] considered a nonlinear polynomial form of
the stress or strain energy density function, in which they reduced
the polynomial basis by employing symmetry conditions on the basis
form and by using some mathematical group theorems. It should be

noted that this approach included major crystal classes of anisotropy.

The key idea in applying the above approach to anisotropic
materials, is to extend the symmetry that a material exhibits in its
crystallographic form to anisotropic bodies that are not crystals, but
have a micro-structura. symmetry, which results from the fiber
periodic positioning in its inclusion, disregards the matrix or fiber

materials.

Hahn and Tsai [4] followed this approach and considered the
axial shear nonlinear behavior in a composite lamina under a plane
stress state.  They used a complementary elastic energy density
functicn and imposed transverse-isotropy symmetry conditions to

generate a nonlinear elastic constitutive relation.  The interaction




terms between the shear nonlinear stress and other stress

components were neglec.ed in this formulation.

The theories of Hashin et al and Smith and Rivlin are reviewed
and implemented in an incremental nonlinear finite element analysis

in the following chapters.

2.2 Postbuckling Analysis of Laminated Plates

A flat plate subject to membrane forces remains flat provided
these forces are small. By increasing the applied forces the flat plate
becomes unstable and tends to deform in such configurition to allow
small lateral displacements. These loads are the critical or buckling
loads. It the loads are increased more, the plate establishes a stable
configuration which allows bending due to membrane forces. The
plate is then said to be in the postbuckling range and a stiffness
reduction will occur, but the plate can still resist the increasing

applied loads.

2.2.1 Nonlinear Analysis of Thin Laminated Plates

The involvement of geometric nonlinearity along with
laminated plate theory makes it a tedious, if not impossible, task to
generate close form solutions in the postbuckling range. The
postbuckling formulations of thin flat plates involve the use of
equilibrium equations written in the current deformed configuration,
along with some Airy type function generating equilibrium
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conditions in terms of the membrane forces. A second nonlinear
equation is derived from the compatibility condition to foim a set of
two coupled nonlinear partial differential equations (FDE).  This
formulation of governing postbuckling equations for thin flat plates
is introduced in Appendix B. These nonlinear PDE's can be solved
approximately through the use of a truncated double lourier series to

generate a set of nonlinear algebric equations.

This approach was used by [S5] to solve a postbuckling of
orthotropic rectangular plate with all-clamped or all-simply
supported  edges. Also [6] considercd a postbuckling of
symmetrically laminated plates with the same boundary conditions

as |5].

2.2.2 Nonlinear Analysis of Thick Composite Laminate

The analysis of thick section laminated plates and shells
includes the account for transverse shear which becomes an
important factor as the depth to length ratio increasecs. The
transverse shear included by the Reissner-Mindlin plate theory
offers a better alternative to the Kirchhoff plate theory. Postbuckling
analysis of thick composite laminates was considered by [7.8]. Both
Kirchhoft thin plate and Mindlin thick plate were analyzed. It
indicates  that the transverse shear reduces the buckling loads,
moreover, the postbuckling stiffness is also reduced by including the
transverse shear effects.  The major assumption, in the nonlinear
range, of both Kirchhoff and Mindlin type plate theories is the

6




existence of small strains and large in-plane rotations. The
independent interpolation of the rotations, in the x and y directions,
irom the transverse deflection in Mindlin plate theory makes it a
difficult task to tormulate the governing postbuckling eauwadons. The
tinite element method of Mindlin type clcients offer an  attractive

method tor the solution of postbuckling analysis of laminated plates.

Finally, it is important to notice that various combined
cxperimental and numerical studies were performed to validate the
thin laminated plate theory in uniaxial compression over the
postbuckling range [9]. To the knowledge of the authors, no biaxial
compressive experimental and numerical study was conducted to

verify the theory.




3. NONLINEAR CONSTITUTIVE MODELS OF FIBER COMPOSITE
LAMINATES

The unusual shear behavior in thermoset fiber composites and
matrix nonlinearity 1n thermoplastic composite systems led to a
concern to assess the nonlinear behavior through a suitable
formulation of constitutive model and thrcugh the examination of

such nonlinear effects on the structural responses.

In this chapter, two major theories are reviewed and examined.
The first theory considers the stress-strain behavior as a nonlinear
elastic. A complementary energy density function is formed and
various classes of anisotropic symmetr, are imposed on its
polynomial basis. The result is a simplified reduced polynomial
basis, which a nonlinear constitutive model can be derived from. The
second approach used the deformation theory of plasticity and the
Ramberg-Osgood characterization of a nonlinear stress-strain
relation. These constitutive models are both implemented for the

AS4/] polymer composite material.

3.1 Anisotropic Elastic Constitutive Model

3.1.1  Strain Energy and Complementary Energy Density Functions

When given a perfectly elastic body, there exists an elastic

strain energy function per unit volume, W, of the undeformed body.
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This function is a single-valued function of the strain tensor such

that
o2 aeij aeji or Y aeij (1)
where W = W(ejj) = W(ui) (2)
The complementary energy density function W* can be defined
through

Wey) + W¥(oy) = Gjj € (3)
It is important to notice that under symmetry operations oij €jj
remains invariant. Hence, one can choose a representation of the
constitutive model through W or W*,

3.1.2  Polynomial Representation of Strain Energy Function

Assuming that the strain energy function is analytic in its

arguments, it can be represented as

W (e) = 3, Wile)
D=2 Wites "

Where W; is a homogeneous function of the degree r




We(keij) = AW (ej) (5)

Obviously it is impossible to consider infinite terms of W,
Hence, a truncated cubic approximation will be used. It can be

written as

W =W, +Cjej + ;— Cijiar &ij et ;— Cijximn €ij €kl €mn 6)

Where W, is an arbitrary constant and Cjjis an initial stress
tensor. It is easy to notice that a quadratic form of W yields linear

constitutive relations.
3.1.3 Material Symmetry

It the anisotropic material is considered to be homogeneous
and possesses symmetry due to the fibers positioning, certain

restrictions can be imposed on the polynomial basis of W. Given that

X; and X; are two equivalent symmetric orientations, one can write

W(ey) = W(C'ij) = W(ai a; ex) (7)
and aj; = cos(x;, x;)

Next, we will define some basic symmetric transformation

operators




[ -- Identity transformation.

-I -- Inverse transformation.

R; .. Reflection of the i-th axis, x'i=’ Xi,

Si=® Right-handed rule rotation through o degrees around the

axis in the direction of the normal n.

These symmetric operators will be used to define some basic

crystalline systems.

Triclinic System (I, -I)

The identity and inverse transformations do not effect the
stress or strain tensors. Hence, there can be no restrictions placed on

the polynomial basis of the strain energy function.

W(eij) = W(eqi, e, €33, €12, €23, €13) (8)

Monoclinic _Symmetry

For material having Monoclinic symmetry, the transformation

operators defining this symmetry are

I -1, Si»7 (9)

The first two operators do not effect the form of the polynomial
basis. The rotation of the cartesian coordinate system in & degrees

around the x3 axis yields

11




€23 = €23 and €3 = -€23 (10)

Hence, the . .nitation imposed on the form of the strain energy

function 1is

Wi(e1, €22, €33, €12, €23, €13) = W(e11, €22, €33, -€23, -€13) (11)

This will create two sets of variables which the polynomial

basis is symmetric in
(a1, az) = (€23, €13) and (b1, b2) = (-e23, -€13) (12)

Applying group theorems (1) and (3) in appendix A to produce

a polynomial basis for W in the form

W = W(i, J2, J3, J4, Ky, Ko, Ki1, K2, K22) (13)

Where Jjare the invariant quantities under the above

transformation, and

K1 =e%3, Ki2 =ey3 €23, K23 =e%3 (14)

The reduced polynomial basis of the strain energy is

12



W = W(e1, e, €33, €12, €13, €33, €13 €23) (15)

Orthotropic Symmetry

A  material having three mutually orthogonal planes of
symmetry is called orthotropic material. The basic symmetry

operators are

I, -I, Six.ﬂ’ Si2v“, Sig.n (16)

The first three operators were applied to produce Equation

(15), applying the fourth operator yields
€12 =-€12 €23 = -€23 (17)

The symmetry limitation imposed on W in equation (15) will

be
W(eyi, €22, €33, €12, €33, €2 €3) =
€11, €22, €33, €12, €33, €713, €13 €23
W(er1, €22, €33, -€12, €33, €13, -€13 €23) (18)

We can identify two sets of variables which the polynomial

basis is symmetric in
(ay, a2) = (€12, €13 €23) and (b1, b2) = (-e12, -€13 €23) (19)

13



Using group thecrems (1) and (3) in appendix A, the

polynomial basis of W is

W = Wy, J2, J3, Ja, Js, Ky, Ko, Ky1, K2, K22) (20)

Where J; are the transformation invariants, writing K; and Kjj

Ki=K;=0
K =¢? Ky, = Ky, = e4.e3
11 = €12, 12 = €12€13€23, 22 = €73€33 (21)
Hence,
W = W( 2 2 2 )
€11, €22, €33, €12, €33, €713, €12€13€23 (22)

Applying Si»® will not effect the form of W because if there are
two ortl:ogonal symmetric planes the third orthogonal plane is also

symmetric.

Transverse Isotropy

A composite unidirectional fibrous reinforced material aligned
in x; direction, in which the x, x, plane is compsoed of a hexagonal or
random array of fibers, is said to have a transverse isotropic

symmetry. The basic symmetric operators are

I -I, Ry, §5¢ (o - arbitrary) (23)
14




For an arbitrary rotation of the coordinate system around x;

axis, the new coordinate system can be expressed as
X = a X; (24)

An alternative representation of (24) is

1 1! — -G : 1 —
X)+iX;=e (X1+1X2)’ X3=X3 (25)
Can show
€11t €22 = €11 + €22
€33 = €33
(26)

€1 - € + 2iey, = e2i% (1) - €37 + 2i €12)

ez +ieyy = €% (g3 + ie3)

We can identify the following invariants

Ji=en+en Iy=¢} +¢5 J3=es3 (27)

If we define the quantities

15




_ 2
Ei=e1-e2 Fi=¢l;-¢ef3

Ej =2ey; Fr=2ejzexn (28)
From the transformation, can show
E'l =E; cos 2a + E; sin 20
E, = E; cos 2a. - E; sin 2a,
(29)
F, = F; cos 2a + F; sin 20

F, = F5 cos 2a - Fj sin 20

Symmetry requirement imposed on the form of W, can be

stated as
W1, Iz, J3, Eq, Ep, Fi, F2) = W(ly, I, J3, By, By, Fy, Fy) (30)

Applying group theorem (2) in Appendix A, where the vectors

(1) 2)
% "and% are

oV = (Ey, Ey) of? = (Fy, Fy) n=2 (31)

The invariant forms due to the above orthogonal

transformation are

16




olPo{D =Ef + E5 = J; - 4],

a{Vaf? = EF 1+ EoF; = I3 (32)

oD@ = F} + F§ = 2Js5 + 11J5 - 2J314

A = E|F; - E;F

Where J1-J2,J3 are defined in (27) and

Ja=enexn-el,

Js = lejl (33)
W can be expressed in the polynomial basis as

Assumptions and Simplifications
Consider a transversely isotropic material where x; coincides
with the fibers direction. If the given lamina is to be considered in a

state of plane stress, the form of W will be considerably simplified as

W = W(er1, €2, €1,) (35)

17




The same argument can be made with the complementary

stress energy density function, using the relation (3)

W* = W*(0), 62, 62) (36)

An approximated fourth degree of W* can be written as

w*=%5115%+é—sno%+81201 0'2+15566 0% +

3

1—5111 o1 +,1§—5222 0% +S112 0’% O3 + S122 04 G%+

3

S166 O1 0% + S266 G2 03 +‘11—31111 o} +1~522220‘21 +

4 (37)

‘1756666 0¢ + S1112 01 02 + S1122 6 03 +

S1222 G1 63 + S1166 OF 6% + S2266 6% 6% + S1266 01 02 OF

According to Hahn and Tsai [4], the interaction terms between
6, and osor o,and o, are neglected for the material they
experimented with. It has been shown that an important effect is
produced on the resolved transverse stress in a uniaxial test for a
wide range of fiber orientations. Hence, the only effect considered
by their model was the effect of shear stress nonlinearity without
any interaction terms which may involve other stress components in

the form of W¥*,

18




Finally, the complementary energy density function is reduced
to

W =%S“ o3 +é—522 03 + S12 O 62'*'%866 o} +41_S66660g

38)
Note that the shear components appear separately in their

powers and that there are no interaction terms. Also, the only

nonlinearity is in the axial shear. The constitutive stress-strain

relations can be derived from

_aws
0 Ojj (39)

Cij

3.2 Deformation Theory and Ramberg-Osgood Representation

Deformation type nonlinear stress-strain relations can be

represented in the form

€ij = Sijki Ok (40)

Where S is a function of the average stresses or the proper
stress invariants. If the material is transversely isotropic, and the
fibers are alligned in the x,; direction, the stress invariants are
obtained in Equations (27) and (33). It is convenient to express the
strain tensor into a linear elastic part € and a nonlinear strain part e?j

such that

19




ij g (41)
it follows
Sijki = Sija + Sy

(42)

where

Consider a thin lamina in a state of plane stress, the effective
nonlinear compliances are a function of the three average plane-

stress  components
ST = S[i)jm(cnﬁzzﬁ%z) (44)
The nonlinear stress-strain relations are
el =87 o0 + S, 00
e%, = Si, 011 + 5,00 (45)
ef2 = St 012
For unidirectional fiberous reinforced materials, the fibers
direction is clearly stiffer thaan the matrix. Therefore, the average

stress O11 can be assumed to be carried by the fibers. The other

20




stress comnonents OG22 and O12 are carried by the matrix and give the
nonlinear behavior.  The only nonlinear parts of the compliance

tensor are
P _ P ) P _ P (e 2
S22 = 522(0622,612) and Sé6 = S66(022,072) (46)

Next, one dimensional representation of nonlinear stress-strain

relations in Ramberg-Osgood form are

_ et 4P 00 (Gzz\Ml]
€22 = €5 + € E, {1+ v
(47)
O] G012\ N1
er2 =€, +ef =———[1 (—
1 12 12 G]2 Ty
Where E,is the transverse elastic Young's modulus and Gj,is
the axial elastic shear modulus. The parameters Oy Ty, M,N are curve
fitting parameters.
3.2.1 1, - Deformation Theory
The basic assumption of the deformation theory of plasticity,
for isotropic materials, is that the plastic strains can be represented
S
t‘ll)J = f(Jz) SiJ‘ (48)

Where S, is the deviatoric stress and J, is its second invariant

21




Sij = 0ij - % Okkdi;

(49)
1=L1s;s;

2

Similarly, we can generalize this to anisotropic materials by

assuming that

Where L is a general quadratic function of the stress invariants.
Consider a state of plane stress, the invariant forms resulting from

symmetry consideration are

G11, 022, 612 (51)

Assuming that the stress ©,, does not produce any plastic
strain since it is mainly carried by the fibers, L is a quadratic

) 2
function of o©,, and 912

L = L (622,0%,) = 2262, + B2, (52)

Note that there is nothing fundamental in the assumption of
the general quadratic form in Equation (50). Next, we can determine
the coefficients o, B from a comparison of the nonlinear one
dimensional stress-strain relations with the Ramberg-Osgood stress-

strain representation.

22




A Ramberg-Osgood representation of one dimensional

transverse  Stress

eby = 855(622) 022.—_%2_2 (022 ] 53)
or
egz_.m[ o) ML
2 LVoy] | (54)

From the deformation theory, the nonlinear part of the

transverse strain is

P _02 522 2 2
€22 E, f22 L) E, f25 (o0 03,) (55)

Comparing Equations (54) and (55) leads to

a2 = and fp= LY

1
¢ (56)
The function f,,is the quadratic form L to the (M-1)/2 power.
Similarly, in the case of one dimensional o©,,, the nonlinear

strain in the Ramberg-Osgood form is

N-1

efz = SEa ot 012 = 2| (32 |2 (57)

From the deformation theory, the nonlinear shear strain is

23




el 9—66(1)_G12f66([326 )
12

27 Gy, (58)
Comparing Equations (57) and (58), it follows that
B =-17 and f66=LN_£]
TY (59)
Finally, the nonlinear compliances can be expressed as
M-1
552=E1;[(0“522)2+ (Boi2? ]
N-1
SPe =L | (0o + (Boralf |7
66 Gl2[( 2P+ (Bol |5 (60)
where
o% %

The parameters oy, M and ty,N respectively are curve fitting
parameters for the Ramberg-Osgood representation of stress-strain
curves in a one dimensional case.

It follows that the nonlinear plane stress-strain relations are

O
611=—1—011-—3022

E; E,
- .02 0224 [022 012 2}%}
€22 E, ()'1+Ez +( (TY (6])
N-1
- 02212 | (O12 2]_"
c12= - 012 1+[( 1:Y) 2
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4. FINITE ELEMENT FORMULATIONS

The objective of this chapter is to describe the finite e¢lement
method used to solve nonlinear structural systems. The well known
virtual work principal is used as a 'weak form' to derive the
equilibrium equations

T p=
ij cdv-P=0 (62)

Where P is the applied force vector, B 1is the strain-
displacement matrix assembled in the global structural coordinates

along with the stress vector. Equation (62) can be written as
I(u) = P (63)

Where I is the internal resisting force vector and is a nonlinear
function of the nodal displacements in the case of nonlinear
geometric problems. The representation of the virtual work
expression in Equation (63) can lead to two basic finite element
formulations.  The first is the secant stiffness matrix formulation
which relates the total displacement with the total load vector. The
second method is an incremental formulation which defines a
rclation between increments of loads and displacements through a
tangent stiffness matrix. This method can be derived by

differentiating Equation (63), it follows that

(]
i




K, AU = Ap (64)
where

K= Ko+(K1 + K¥+ K2)+KG
Ko =[ BICBidv

_ T
K, _jv B/ CBdv (65)

Kz = [ BRCBudv
Kg = [, G™MoGdv

Note that the matrix K,is nonsymmetric and is a linear function
in the nodal displacements. K,is a constant independent matrix. The
quantity in parenthesis is called the initial displacement matrix and
is symmetric.  Different combined incremental-iterative techniques
are used to solve the nonlinear set of algebraic equations (64). The
Newton-Raphson (NR) and its modifications are the most known and

used methods. These methods can be described as
Ki AURY = Py - Ty (66)

Where 1 is the iteration number and n is the step or increment
number. The internal resistance vector In+i is updated according to
the method used.

26




The load increment P,,; is specified for a fixed load level

method, whereas, in the case of variable NR iterative methods, the

load increment P,,, is part of the solution. These methods follow the
structure equilibrium path of a structure initially subject to a given

load pattern P, in the form

P =AP, (67)

were A is a scalar determined by adding a constraint to the

equilibrium equations.

In order to accurately simulate the decrease in the load and
displacement near limit or bifureation points, where the tangent
stiffness becomes singular, a modified-Riks (11) iicrative algorithm

is used to follow the equilibrium path. The basic idea of the Riks

method is moving along the tangent line to the equilibrium path and

searching for an equilibrium point located in the plane orthogonal to

the tangent line.

This study makes use of the ABAQUS finite element code (12)

where the modified Riks method is implemented. The nonlinear

formation is the updated Lagrangian method in which the reference

configuration is updated to an intermediate configuration between

the original and current configurations. Thus, the current and

reference configurations remain close.
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4.1. Element Formulation

The plate element used in the postbuckling analysis is the
isoparametric 8-nodes quadrilateral plate element. It has six
degrees of freedom (D.O.F.) in each node which includes three
displacements and three rotations. The element is based on the
Reissner-Mindlin plate theory.  Numerical formulations are more
simple and convenient to implement than the Kirchhoff plate
elements. The theory also accommodates for transverse shear
strains. The continuity requirement is CO° continuity due to the fact
that only first order derivatives of the D.O.F. appear in the virtual
work expressions. The displacements and rotations are decoupled.
Hence, the element is mappable and allows modeling of complex
geometries.

The displacement field is

u(x,y,z) = ux,y) - Z0

v(x,y,z) = vox,y) - Z8,

w(x,y,z) = w(x,y)
The above displacement field is independently interpolated

within the element

u=N;U; V°=N)V; W = N;W;

6, =Nifi 8, =Ny,
28

(68)

(69)




The notation used is the index summation on the element
nodes. The nonlinear strain-displacement reiations, defined in

appendix B, are applied to the displacement field in (68) and yield

£xx=u?x+%-w‘2x'zex
Eyy="‘.’y+%w.2y‘zey

Exy = Uy + Vi + WiW,y - ZOxy- 276y, (70)

Exz = Wox - Oy y

Eyz = W,y - By

Both Equations (69) and (70) defines the strain-displacement

matrix B in the form

d€, Ni. 0 0 -ZN;, 0
Se,, 0 N, 0 0 ZN,,
se| = | Ny, No. 0  -ZN,, 7N, +
8., 0 0 Ny -N 0
5¢,., 0 0 N, O N
0 0 W,N,N, o o]|lsy,
0 0 W,N,N, 0 0 f 18V,
W, N, Ni, E |
0 0  W;N,.N, 0 0||w,
0 0 0 0 0lffse,
0o o 0 0 0f|[s6, ]
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Equation (71) defines linear and nonlinear parts of the strain-
displacement matrix. Again, note the summation over indices i and j

where they represent the eiement nodes.
4.2 Constitutive Tangent Stiffness

The material tangent stiffness or Jacobian matrix of the
constitutive model relates incremental stresses and strains. It can be

defined as
SAGi
ij= dAg;

C (72)

Where Aoc; and Ag; are the stress and strain incremental vectors.
In the case of material and geometric nonlinearities, the material
model should be formed in an incremental form to accommodate

with the incremental finite element formulations.

Three constitutive models are considered in this study. The
first model, presented in Chapter 3, considers the axial shear
nonlinearity. The incremental form of this model, in a plane-stress

condition, is

de, St Si2 0 do,
de, ¢ =| Si2 S 0 do, (73)
deg 0 0 S¢+ 3S 666694 dog
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The second model considers uncoupled transverse and shear stress-

strain relations. Its incremental form is

de, Sn S12 0 do,

2
de,  =| Si2 Sa+ 38222,02 0 do, (74)
des 0 0 Ses + 3S66660% dos

The third model considered in 3.1.4 for coupled transverse and shear
stress-strain  in Ramberg-Osgood representation. The incremental

form for this model, in the case of M=N=3, is

ey [ Sn S12 0 do,
dez = S]2 522(1 + 3(120% + BZ 0%) 2522B20266 dcz (75)
de6 0 2S6Ga20266 566(1 + azc% + B2 0%) dGG

The Jacobian matrix of this model is not symmetric. This will
invoke unsymmetric equation solves. All these models are in the
materials coordinate system and need to be transformed in the
global structural coordinates for each layer. The relation for the
transverse stress-strain is considered linear and introduced to the

formulation through shear correction factors.
The material considered in this study is AS4/J; polymer

composite. The stress-strain curves are presented in Fig. 2 and Fig.

3.
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4.3 Imperfection Analysis

In order to generate a solution for plates in the postbuckling
range and to enable the plate to deform in the transverse direction
due to inplane forces, an imperfection technique is implemented in
the finite element model. This method is carried out by either a
perturbation of the model nodes in the transverse direction such that
it will include some of the first eigen vectors in its form, or by
applying small distributed loads in the transverse direction at the

beginning of the analysis.
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5. NUMERICAL RESULTS

5.1 Plate Geometry and Boundary Conditions

This study considers the problem of buckling and postbuckling
analysis of laminated plates. The material constitutive models
developed in Chapter 3 are implemented in an incremental nonlinear
finite element formulation. The plates have a square geometry (L =
300mm) and are subjected to a compressive biaxial in-plane loading.
The laminate stack sequence considered is a quasi-isotropic laminate
[0/90/£45],,. The plate edges are constrained to produce a uniform
displacement in the x and y direction respectively. Both in the
buckling and postbuckling analysis a full finite element mesh is used
due to the nonlinear geometry involved. Most of the results arc
presented in the form of the applied load, normalized by the plate
critical load, versus end-shortening in the x direction, normalized by
the plate thickness. The effect of stress-biaxiality ratio is studied for
a clamped plate with different aspect-ratios (t/L = 0.02, 0.04, 0.08).
The range of biaxial loading ratios are chosen for the values: 0, 0.5,

1.,2. . For N,/N,= 0. this is the case of uniaxial loading.

5.2 Linearized Buckling and Imperfection Analysis

In order to enable the plate to deform in the lateral direction
due to membrane forces, a geometric imperfection is introduced in

the fii.ite element mesh. The first three eigenmodes, derived from
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linearized buckling analysis, are combined in a linear combination
and scaled by some percentage of the plate thickness. It is a well
known fact that plate structures are not sensitive to the form of
imperfection.  Nevertheless, a smaller percentage of imperfection
implemented, the more the postbuckling response is close to the real
behavior. One percent of the thickness is chosen to scale the linear
combination of the first three eigenmodes. This will enable the plate

response to be very close to the real perfect structure.

5.3 Materials Models

The fiber reinforced material considered in this study is made
of AS4/J1 thermoplastic matrix. The effective elastic properties of

this composite system are:

E,, =17.9 x 106 psi, E,; = 0.9 x 10 psi, 9, = 0.313
Gy = Gyy = 0.77 x 108 psi, G,; = 0.31 x 10 psi

The nonlinear stress-strain curves for this material, in axial
shear [13] and transverse tensile-compression, are presented in figs.
2-3.  The three nonlinear constitutive models developed in Chapter 3
are formulated based on these one-dimensional stress-strain curves.
These models are referred to as model 1, 2 and 3 in the following

discursions.
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5.4 Convergence Study

The convergence rate, in finite element analysis of plates,
depends strongly upon the plate aspect-ratio (t/L). A large number
of elements are required to obtain an accurate solution for thick
laminates, especially in the postbuckling range. Hence, the case
study chosen is a clamped plate under biaxial compressior (N,/N, =
0.5) with an aspect-ratio of 0.08. Fig. 4 illustrates the rate of
convergence in the prebuckling and postbuckling ranges for n x n
clement mesh refinement. Based on these results, the 8 x 8 elements
mesh was chosen in the following analysis. It should be noted at this
stage that there is an enormous amount of computational time
needed tor the postbuckling analysis where the maicrial model is
nonlinear. A typical 8 x 8 isoparametric 8-nodes quadrilateral shell
clements modeling a [0/90/£45]s laminated plate require a large
number of Gaussian integration points (2 x 2 x 64 x 40 Gaussian
points). This calculation assumes that each lamina i1s modeled
through the thickness with one integration point. The material
model would be called about 10,000 times per one iteration! Ncting
that a typical postbuckling analysis requires hundreds of iterations,
onc can clearly realize the large amount of computational time
involved.  Hence, the stack sequence chosen for most of this study
was  [0/90/£45],. A design of thick laminates requires the use of a
sublaminate  technique whereby a typical repeating sublaminate

includes the material nonlinearities.

35




5.5 Effect of Thickness

The laminate aspect-ratio effect on the postbuckling behavior
i1s studied for [0/90/£45], clamped plate under biaxial compression
(Ny/N. = 90, 05,.1,, 2.). The thickness/length ratios considered are:
0.02, 0.04, 0.08. Figs. 5-8 illustrates the end-shortening curves of
three laminates with different aspect-ratio and different biaxial
loading. It is shown that the postbuckling stiffness decreases, as the
load increases, for large aspect-ratio (t/L = 0.08). This is due to the
growing effect of transverse shear in thick plates. The first nonlinear
material model is plotted along each curve. The nonlinear curves of
plate response with aspect-ratio less than 0.04 do not show a
difference compared to the linear material response. Note the early
separation of the linear and nonlinear curves for t/LL = 0.08. This
indicates that there is a difference in the buckling load between the
two models. This shift or separation of curves shows that the
nonlinear plate is more flexible. This flexibility is expressed by
looking at a fixed load level and considering that the corresponding
difference of the displacement is much higher than the difference in
the load for a fixed value of the displacement.

It can be concluded that the more the postbuckling stiffness is
decreasing, the more the effect of material nonlinearities can be seen.
Also, the nonlinear response is associated with large deflections. The
only nonlinear material model considered in the above figures is the
first model which includes the axial shear nonlinearity. The other

models are considered in the foliowing figures for t/L = 0.08.
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5.6 Thick-Section Plates

The three nonlinear models are considered in the analysis of a
thick-section plate (t/L = 0.08) with biaxial loading (N,/N, = 0/ 0.5, 1,
2) and stack sequence [0/90/+45],. The end-shortening of the plate
versus the normalized applied load is presented in figs. 9-11. The
plate center deflection is presented in figs. 13 '5. These figures
clearly demonstrate the effect of nonlinear behavior of fiber
composite materials upon the global response of the structure. The
closest nonlinear behavior to the linear response is the nonlinear
axial shear model (model 1). Model 2 and 3 follow in order. This
consistent pattern of behavior can be explained by the fact that
model 2 includes the transverse nonlinear response along with the
nonlinear in-plane shear, in an independent fashion. Model 3
considers both nenlinearities along with interaction terms. It can be
expected that model 3 produces the largest nonlinear effect. The
same conclusion can be drawn from the lateral deflection curves figs.

13-15 for different biaxial loading ratios.

Finally, an additional case of multi-layered thick laminate
[0/90/£45],,, is considered. The aspect ratio in (t/L = 0.08) and the
biaxial loading ratio is N,/N,= 1. . The end-shortening postbuckling
response is presented in fig. 16. the lateral displacement behavior is
presented in fig. 17. Both curves indicate that the three nonlinear
models produce a very close response in most of the postbuckling

range. This behavior can be explained by the presence of large
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number of layers of 0° and 90° degree fiber angles. These layers
carrv most of the applied loads in the fiber directions. As a result,
the nonlinear strain distribution in the mairix is reduced. Figs. 18-
19 support this observation. In these figures the transverse shear-
stress resultants V, and V, are presented respectively. The location
of these resultants is the mid-point of the upper right quarter of the
plate. These figures indicate that the nonlinear models do not affect
the stress distribution in the structure as much as producing
relatively large displacements. Also, fig. 20 shows the strain in the
fiber direction of the upper and lower layers at the plate center. It is
shown that the strain in the fiber direction can be considered as a

linear elastic strain with no plastic or nonlinear part.
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6. CONCLUDING REMARKS

The approach utilized in this report was to present two major
theories of nonlinear constitutive models of stress-strain behavior.
The first approach considers the stress-strain as nonlinear elastic
relations, which are derived through the use of a complementary
energy density function and takes into account the material
symmetries. The second approach was to adopt the Ramberg-Osgood
representation of the one-dimensional nonlinear stress-strain curves.
By utilizing the deformation theory as a representation of the
nonlinear parts of the strain, a nonlinear stress-strain behavior was
obtained. The first two models, referred as model 1 and model 2, are
based on the first approach. Model 1 represents the nonlinear axial
shear behavior. In addition, model 2 takes into account the
transverse stress-strain behavior in an independent fashion.  The
third model is based on the second approach of deformation theory.
It includes both nonlinear stress-strain relations. Moreover, an
interaction expression was formulated to account for simultaneous

presence of axial shear and transverse stress.

The postbuckling results of thick section laminated plates
indicates that the nonlinear stress-strain behavior has a global effect
on the structural response. The stiffness was reduced and a large
displacement was associated with the structural behavior. The
distribution of the stress resultant in plate seems not to have a major

change compared to the linear response.
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It is important to emphasize that the problems analyzed in this
study do not include any stiess singularities such as matrix cracking,
delamination, holes and cutouts. These local effects can have a
significant inelastic behavior. The question of the effect of nonlinear
constitutive behavior on such local damage modes and structural

discontinuities should be addressed as a continuation of this study.

A comparison of the three models presented yields that the
first model produces the most conservative response. The
interaction terms in the deformation theory model gives a difference
of response than the other models. The structural behavior of multi-
layered thick laminates which are associated with these constitutive
models are very close. This result indicates that the presence of
large numbers of wunidirectional layers oriented in different
directions decreases the nonlinear strains by the fact that the fiber

direction can carry most of the applied loads.

Failure criterias were not used in this study. Obviously, the
laminated thick section plate will be damaged in the process of
postbuckling or even prebuckling response. Hence, it is important to

include failure and local effects in a future study.
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APPENDIX A

The following short review covers three mathematical group
theorems. Mathematical discussion and proofs are beyond the

context of this study and can be found in [10].

Theorem (1)

A polynomial basis for polynomials, which are symmetric in
the two sets of variables (a,, a,, ...., a,) and (b;, by, ..., by), is formed

from the quantities

Kj = (aj +bJ)

Y

Kjk = ;-(aj by + ak bj)

Theorem_ (2)

A polynomial basis for polynomials, which are symmetric in
the n vectors ®® =(1,02,....0)” in n-dimensional space, and which is
invariant under all proper orthogonal transformations, is formed by
the scalar products

Vol
and Lr,s = 1,2,...,n

o)

Theorem _(3)
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A polynomial basis for a polynomial in the variables (a,,a,,...,a,),
(by,by,...,by) and (J,,),,...,J,), which is form-invariant under a group of
transformations and (J,,J,,...,J,) are invariants, is formed by adjoining
to the quantities (J,J,,...,J,) the polynomials in the variables
(a;,as,...,a,) and (by,b,,...,b,) which are form-invariant under the given

group of transformations.
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APPENDIX B

Postbucking Analysis of Thin Plates

The purpose of the present appendix is to develop the
governing equations for postbuckling analysis of laminated thin
plates. Although in this study the postbuckling analysis was
performed through the use of the finite element method and for
thick and thin plates, it is important to recognize the formulation of
the governing equations for postbuckling analysis and that there are
different ways to obtain approximated solutions, such as the finite
difference method or by a truncated double fourier series method.

In attempting to write the equilibrium equations for
postbuckling of plates, one should write the equilibrium equations in
the current configuration. By transforming these equations to the
original or reference configuration, a set of nonlinear equilibrium
equations can be obtained.

A point occupying the reference configuration is denoted as a
position vector x, this vector corresponds to the position vector x in

the deformed configuration, where
Xi=Xi+uy (1)

Where u; is the displacement vector. The deformation gradient

tensor is defined as
Jxi
FU=—= ,
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The Green strain tensor can be written as

€= %(Fkiij - §;j) = ';‘(Ui,j +Uj; + Uk ju,j) 3)
Equilibrium in the deformed configuration, with no body forces, can
be expressed as

[Tics=0 (4)

Where Ti and ds are traction vector and element area respectively in
the deformed configuration. The stress measure used is the
symmetric second Piola-Kirchhoff stress which is obtained by
mapping the force transmitted over an element area ds in the current

configuration to the reference configuration

T; §=FijTjds=Fij0jknde (5)

Where T; is a fictitious stress vector acting over an element area ds,
with a unit outward normal n,, in the original configuration.

Substituting Equation (5) into (4) yields

I.Fij Oik ds=0 (6)

Using the divergence theorem
[(Fiojididv =0

(7)

44




Equation (7) is true for any volume v. The equilibrium equations are

[Fijojlk =[(8i +uij ) Ojulx =0 (8)
i=123

substituting

Uij = €ij + Wi (9)

Where e;is the linear engineering strain and w;; is the skew-

symmetric rotation-tensor
(855 + &5 + wiglojidx = 0 (10)

Next, we will use the kinimatic assumptions of nonlinear deformation
of thin plates, which are known as the von Kdrmdan theory of plates.
This theory assumes that the strains can be neglected compared with
the rotations. Moreover, for flat thin plates we can neglect the

rotation w,,. Introducing these assumptions in Equation (10)
[(8i; + wij Joji]k =0 i=123 (11)

Writing the set of Equations (11) explicitly, we can show that the
first tow equations, 1 = 1,2, are reduced to the well known linear
equilibrium equations. The only nonlinear equation is the

equilibrium equation in the Z direction

Cap,p =0 op =12 (12)

The third equilibrium equation is
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(w,xaxx + w‘yoyx + sz)‘x + (W'xoxy + w'yoyy + Gzy),y

+ (WxOxz + WyOyz+022) = 0 (13)

Where w is the lateral displacement. Integrating the above
equations in the same fashion as when developing the classical
Kirchhoff plate equations

Negp =0 (14)

Muxx + 2Myyxy + Mygyy + Nog Wi + 2N,y Wy

+ Ny, w,, +P=0 (15)

The nonlinear strains are
Exx = U% + % W + Zkyx

= 1 w2

2 (16)
Exy = Wy + Wy + W, Wy + ZKyy
Where k;are the plate curvatures given by
kxx = 'w,xx kyy = -W-YY k")’ = q2w-"y (17)

The constitutive relations in terms of the generalized strains and

stress resultants are the well known relations

(il = [3 g] ‘ﬁ} (18)
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Considering a symmetric laminate, for simplicity, and introducing

Equation (18) into Equation (15) and B = 0

D11 wxxxx + 4Dys W oxxxy t 2Dy, + 2Ds¢e) Woxxyy + 4D26W.xyyy
+ 4D Wxyyy Dss Wyyyy = wa,xx + 2ny Wiy t

N, W, +p (19)

Next, we will use force function y such that the in-plane equilibrium

equations are satisfied
Nx=Wyy Ny = ¥ xx Nxy =-W.xy (20)

Writing the compatibility equation in terms of the mid-surface

strains

E%x.yy + Efy.xx - By.xy = Why - Woxx Wyy (21)

Introducing (20) into (18) and substituting the reference surface

) o,
strains &ij into (21)

A212 W.xxxx - 2A-216 \V.xxxy + (ZA_112 + A-616) W.xxyy - 2A.116 \If.xyyy +

-1 _ 2
Al V.yyyy = Wixy - WxxW,yy (22)

Equations (19) and (22) define a set of coupled partial differential
equations. These are the postbuckling nonlinear equations of thin

laminated plates.

47



“

REFERENCES
1. Adams D.F.," Inelastic Analysis of a Unidirectional Composite Subject to

Transverse Normal Loadin ", J. Composite Mats., Vol.4, pp.310, 1970.

o

Zvi Hashin, Debal Bagchi and B. Walter Rosen,” Nonlinear Behavior of
Fiber Composite Laminates”, NACA CR- 2313, 1974,

3. Smith G.F. and R.S. Rivlin,” The Strain Energy Function for Anisotropic
Elastic Materials", Trans. AMS.,Vol.88, pp. 175-193, 1958.

4. Hong T. Hahn and Stephen W. Tsai,” Nonlinear Elastic Behavior of
Unidirectional Composite Laminates”, J. Composite Mats., Vol.7,pp.102,

1973.

5. C.Y. Chia and M.K. Prabhakara,” Nonlinear Analysis of Orthotropic
Plates”, J. Mech. Eng. Sci., Inst. Mech. Eng.( London ), pp. 133-138,1975.

6. M.K. Prabhakara and C.Y. Chia," Postbuckling of Angle-Ply and
Anisotropic Plates”, Ing. Arch., Vol.45,springer-Verlag KG ( Berlin ),pp.
131-140, 1976.

7. M. Stein," Effect of Transverse Shearing Flexibility on Postbuckling of
Plates in Shear”, AIAA J.,Vol.27, No.5,pp652-655,1989.

8. A.K. Noor and J.M. Peters,” Multiple-Parameter Reduced Basis
Technique for Bifurcation and Postbuckling analysis of Composite

Plates”, Int. J. Num. Meth. Eng., Vol.19,No.12,pp. 1783-1803,1983.




9.

10.

11.

J.H. Stranes Jr. and M. Rouse," Postbuckling and Failure Characteristics
of Selected Flat Rectangular Graphite-Epoxy Plates Loaded in
Compression”, Proceeding of the 22-nd AIAA/ASME/ASCE/AHS
Structures, Structural Dynamics and Material Conference,

Atlanta,GA,AIAA Cp. 811, pp. 423-434,1981.

H. Wely, The Classical Groups, Princeton University press, p.
36,53,276 , 1946.

Crisfield M.A.," A Fast Incremental/Iterative Solution Procedure that

Handels ' Snap-Through'
1978.

, Computers and Structures, 13, pp 55-62,

12. ABAQUS Computer Code, Version 4.7, Hibitt, Karlsson and Sorensen

13.

14.

Inc., Providence, R.1.,1988.

S.S. Wang and A. Dasgupta,” Development of Iosipescu-Type for
determining in-Plane Shear Properties of Fiber Composite Materials:
Critical Analysis and Experiment”, Polymer Group, University of Illinois

at Urbana-Champaign, UILU-ENG-86-5021, 1986.

A. Miyase, Experimental Study at the National Center for Composite

Materials Research, to be published.




Fig.1 - Unidirectional fiber composite material.
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AS4/J-POLYMER COMPOSITE
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Fig.2.-.Axial shear stress-strain curve, ref. [13].
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AS4/41 Polymer Composite
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and axial stress-strain curves,

Fig.3.- Transverse
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Fig.4 - Convergence study of postbuckling response of clamped plate in
the form of plate end-shortening.
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Ny/N, =0

s t /L = 0.02
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————— Lnear
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Fig.5 - Effect of laminate thickness on plate postbuckling behavior for

linear and nonlinear fiber composite materials. End-shortening versus

axial load (clamped plate, 1.% imperfection, Ny=0).
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[0/90/+45/-45],
clamped plate
N,/N, = 0.5

e /L 0.02

Fig.6 - End-shortening of laminates with different aspect-ratios for
linear and nonlinear materials.(Clamped plate, 1.% imperfection,

Ny/Nx=0.5).
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[0/90/+45/-45];
clamped plate

N,/N, = 1.0
———— t /L = 0.02
ceoeeo t/L = 0.04
seese t/L = 0.0
————— Lnear :
~ — - Model 1 |
1 | 1 1 | | '
1.0 P

Fig.7 - Effect of laminate thickness on plate postbuckling behavior tm
linear and nonlinear fiber composite materials. End-shortening versus

axial load. (Clamped plate, 1.% imperfection, Ny/Nx=1.).
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[0/90/+45/-45],
clamped plate
N,/N, = 2.0

Lnear
— — — Model 1

Ogg; 1 1 1 |

|
0.25
U/t

Fig.8 - Effect of laminate thickness on plate postbuckling behavior for

linear and nonlinear fiber composite materials.

axial load. (Clamped plate, 1.% imperfection, Ny/Nx=2).
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Fig.9 - End-shortening of thick-section laminated plate for linear and

nonlinear material models.
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Fig.10 - End-shortening of thick section laminated plate for linear and

nonlinear material models. (1.% imperfection, Ny/Nx=O.5,t/L=0.08).
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Fig.11 - End-shortening of thick-section laminated plate for lipear and

nonlinear material models. (1.% imperfection, Ny/Nx=2., t/L-0.0%)
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Fig.12 - Effect of stress-biaxiality ratio on postbuckling response for

linear and nonlinear material models. (1.% imperfection, t/L=0.08).
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Fig.13 - Postbuckling load and plate central deflection for thick section

and different material models. (1.% imperfection, Ny/Nx=0, t/l.. 1).0X).
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t/L = 0.08
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Fig.14 - Postbuckling load and plate central deflection for thick-section

and different material models. (1.% imperfection, Ny/Nyx=0.5, ¢/L=0.08).
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Fig.15 - Postbuckling load and plate central deflection for thick sccnan

and different material models.(1.% imperfection, Ny/Nx=2., t/I.=0.0%}
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Fig.16 - End-shortening of thick-section multi-layered plate for linear

and nonlinear material model (Clamped plate, 1.% imperfection, Ny/Ny-

1.).
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Fig.17 - Lateral deflection of multi-layered thick plate for different

material models.
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(Clamped plate, 1.% imperfection, Ny/Nx=1., t/L=0.08).
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Fig.18 - Transverse shear behavior in a clamped [0/90/+45}izs plate

under biaxial compression.
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Fig.19 - Transverse shear behavior in a clamped [0/90/+45]12s plate

under biaxial compression.
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Fig.20 - Axial strain behavior of the top and bottom layers at the plate

center.
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